Reg. No. \square

Question Paper Code : X 60766

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Second Semester
Civil Engineering
MA 2161/080030004/MA 22 - MATHEMATICS - II
(Common to all Branches)
(Regulations 2008)
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions.
PART - A

1. Solve $\left(D^{2}-4\right) y=1$.
2. Convert into $\left(3 x^{2} D^{2}+5 x D+7\right) y=2 / x \log x$ an equation with constant coefficients.
3. Find the directional derivative of $\phi=x y z$ at $(1,1,1)$ in the direction of $\overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}$.
4. If \vec{A} and \vec{B} are irrotational, prove that $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}$ is solenoidal.
5. State the basic difference between the limit of a function of a real variable and that of a complex variable.
6. Prove that a bilinear transformation has at most two fixed points.
7. What is meant by essential singularity ? Give an example.
8. State Cauchy's residue theorem.
9. What is meant by exponentially ordered function?
10. Evaluate $\int_{0}^{\infty} \frac{1-\mathrm{e}^{-\mathrm{t}}}{\mathrm{t}}$ dt by using Laplace Transform.

PART - B
11. a) i) Solve $\left(D^{2}+a^{2}\right) y=$ sec ax using the method of variation of parameters.
ii) Solve : $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$.
(OR)
b) i) Solve the differential equation $\left(x^{2} D^{2}-x D+4\right) y=x^{2} \sin (\log x)$.
ii) Solve the simultaneous differential equations

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dt}}+2 \mathrm{y}=\sin 2 \mathrm{t}, \frac{\mathrm{dy}}{\mathrm{dt}}-2 \mathrm{x}=\cos 2 \mathrm{t} \tag{8}
\end{equation*}
$$

12. a) i) Show that the vector field $\overline{\mathrm{F}}=\left(\mathrm{x}^{2}+x y^{2}\right) \overline{\mathrm{i}}+\left(y^{2}+x^{2} y\right) \overline{\mathrm{j}}$ is irrotational. Find its scalar potential.
ii) Verify Stoke's theorem for $\overline{\mathrm{F}}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \overline{\mathrm{i}}-2 \mathrm{xy} \overline{\mathrm{j}}$ taken around the rectangle formed by the lines $x=-a, x=+a, y=0$ and $y=b$
(OR)
b) i) Find a and b so that the surface $a x^{3}-b y^{2} z-(a+3) x^{2}=0$ and $4 x^{2} y-z^{3}-11=0$ cut orthogonally at the point $(2,-1,-3)$.
ii) Verify Gauss Divergence theorem for $\overline{\mathrm{F}}=4 \mathrm{xz} \overline{\mathrm{i}}-\mathrm{y}^{2} \overline{\mathrm{j}}+\mathrm{yz} \overline{\mathrm{k}}$, where S is the surface of the cube formed by the planes $x=0, x=1, y=0, y=1 ; z=0$ and $\mathrm{z}=1$.
13. a) i) If $u(x, y)$ and $v(x, y)$ are harmonic functions in a region R, prove that $\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ is analytic.
ii) Find the bilinear transformation which transform the points $\mathrm{z}=0,1, \infty$ into $\mathrm{w}=\mathrm{i},-1$, -i respectively.
(OR)
b) i) If $f(z)=u+i v$ is analytic, find $f(z)$ given that $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
ii) Under the transformation $\mathrm{w}=\frac{1}{\mathrm{z}}$ determine the region in $\mathrm{w}-$ plane of the infinite strip bounded by $\frac{1}{4} \leq \mathrm{y} \leq \frac{1}{2}$.
14. a) i) Use Cauchy's integral formula to evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-2)(z-3)} d z$, where C is the circle $|z|=4$.
ii) Find the Laurent's expansion of $f(z)=\frac{7 z-2}{(z+1) z(z-2)}$ in the region $1<|z+1|<3$.
(OR)
b) i) Using Cauchy's residue theorem, to evaluate $\int_{c} \frac{z-3}{z^{2}+2 z+5} d z$. where C is the circle $|z|=3$.
ii) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5-3 \cos \theta} \mathrm{~d} \theta$, by using contour integration technique.
15. a) i) Find $L\left[t^{2} e^{-3 t} \sin 2 t\right]$.
ii) Find the Laplace transform of the square-wave function (or Meoander function) of period a defined as
b) i) Using convolution theorem find the inverse Laplace transform of

$$
\begin{equation*}
\frac{4}{\left(s^{2}+2 s+5\right)^{2}} \tag{8}
\end{equation*}
$$

ii) Solve $y^{\prime \prime}+5 y^{\prime}+6 y=2$ given $y^{\prime}(0)=0$ and $y(0)=0$ using Laplace transform.

